
AxF - Appearance exchange Format

Gero Müller, Jochen Tautges, Alexander Gress, Martin Rump,
Max Hermann, and Francis Lamy

X-Rite, Inc., 4300 44th St. SE, Grand Rapids, MI 49505

January 15, 2021
Version 1.8

Abstract

In this paper X-Rite presents a file format for exchanging digital ma-
terial appearance. The format is a vital part of X-Rite’s appearance ini-
tiative consisting of a new generation of appearance capturing devices. In
order to make the usage of measured appearance as simple as possible
for users, a broad support by software vendors is essential. Therefore, X-
Rite aims to initiate the assembly of a consortium of hard- and software
vendors, members of the scientific community and users, which would be
responsible for the further development and standardization of the format.

1 Motivation

Driven by the ongoing virtualization of the product design process we see a
growing demand for measured material appearance. This trend pushes the need
for efficient and standardized exchange, communication, and archiving of digital
appearance data.

Nonetheless, current digital material workflows are far from being standard-
ized. In practice, most often proprietary data formats are used. If materials need
to be transferred between software packages, data usually needs to be stripped
down to a least common denominator like an image or a simple reflectance model
like Blinn-Phong, which is used for instance by OpenGL’s and Direct3D’s fixed
function pipeline. While workarounds can be found for individual cases, this sit-
uation is not acceptable for users of appearance measurement devices because a
physical material measurement should be independent of specific 3D rendering
software platforms.

We are aware of the fact that due to the highly competitive and innovative
nature of the field it is not an easy task to reach for standardization in graphics.
On the other hand, starting this endeavor from the measurement side seems to
be a promising approach. It should be the common goal of both software and
hardware vendors to achieve a consistent reproduction of measured appearance
across different systems. This, and nothing less, is expected by the users.

1

2 Requirements

Besides mandatory requirements like efficiency and platform independence we
want to bring attention to some special requirements for appearance data.

Scalability The format should be able to store raw measurement data, which
easily can range up to several gigabytes. Therefore the format must be
scalable, which means access times should not depend on the file size. This
requirement rules out text-based formats like XML, which lack indexing
capabilities.

Generality The structure of appearance data can be quite diverse, ranging
from a single spectrum up to complex combinations of data from hundreds
of sensors or even procedural descriptions. Therefore, the format must be
extensible and self-describing in order to accommodate all these different
kinds of representations. This requirement does not only hold for payload
but also for metadata.

Workflow compatibility Supporting a least common denominator of appear-
ance representations in addition to a full blown BTF or even BSSRDF is
critical for format adoption. This requires the ability to store different
versions of a material in a single file. We propose to define an SVBRDF
variant as least common denominator since most state of the art rendering
software supports at least a material model based on diffuse and specular
color textures, normal and/or height map and some specification of gloss.

In an industrial environment, data security and protection are also important
and will become an integral part of the format in future versions.

3 Design Decisions

Based on the above requirements, AxF is designed in layers. Since a binary
format is inevitable for efficiency and scalability, we first define a binary layer.
On top of the binary layer we propose a basic structuring mechanism, which
allows to define the hierarchical semantic structure of payload and metadata.
The final layer consists of the explicit definition of the semantic structures.

We propose to use the HDF5 [HDF15] format as binary base layer. HDF5
defines a versatile data model, which can represent any kind of complex data
objects and metadata. The format imposes no (practical) limits on the number
or size of data objects in the file and is available for all major platforms.

The second layer implements a simple but powerful property node tree con-
cept on top of HDF5 (cf. Figure 1). This concept is analog to a basic filesys-
tem concept where nodes correspond to folders (structuring) and properties to
files (payload). Properties support various typical datatypes like integral types,
strings, and unbounded multi-dimensional data arrays.

2 ©X-Rite, Inc.

Figure 1: Property node tree concept

The third layer defines a baseline for valid AxF files that partly should be
supported by all applications integrating AxF. Essentially it defines a set of node
and property types and their semantics as described in the following section.

4 Baseline AxF

The basic semantic structure of an AxF file is related to the Color Exchange
Format (CxF), which has been defined by X-Rite as a portable format for system
and device independent exchange of color data and which has been published
as ISO Standard “ISO17972 Graphic technology – Colour data exchange format
(CxF/X)” [ISO15].

An exhaustive list of all node types and their semantics is beyond the scope
of this document, but to convey the idea we will briefly sketch the root-level
node collections as shown in Figure 2:

� The DeviceSpecs collection (optional) contains specification and cali-
bration data for measurement instruments. It allows the specification of
geometric and radiometric device properties.

� The ColorSpecs collection specifies arbitrary (linear) color spaces and
spectral samplings. Since AxF stores floating point color values, non-
linear color spaces are not part of the current specification.

� The Materials collection contains one or multiple AxF materials. Each
AxF material node is the parent of multiple material-level node collections:

– Metadata is a container for arbitrary, user-defined metadata for the
given material (such as textual descriptions).

– Representations is a set of one or multiple AxF representations.
An AxF representation is a specific digital encoding of the full ap-
pearance of a material, suitable for rendering the material under ar-

3 ©X-Rite, Inc.

bitrary viewing and lighting conditions. A representation may have
been derived from measurements (by fitting a specific model to the
measured data, such that the resulting representation approximates
and generalizes the original measurements) and/or may have been
edited manually.

– Measurements (optional, AxF version ≥ 1.8) is a set of AxF mea-
surements. An AxF measurement is a sampling of certain appearance
properties of a physical material sample, captured by an instrument
under well-defined conditions. A measurement provides a standard-
ized set of values, suitable e.g. for comparison with measurements on
other material samples in the context of quality control.

– Resources is a collection of AxF resources, i.e. textures and uniform
data, which constitutes the payload data for the representations and
measurements of the given AxF material.

� The Resources collection at root level (optional, AxF version ≥ 1.8)
stores AxF resources that are shared by multiple AxF materials. This
allows to reduce storage space in particular when the AxF file contains
a set of materials which are different variants derived from a common
original material.

Note that a Representation node itself contains only the rendering semantics
(such as the used BRDF / BTDF models), but no payload data. Instead it
references the payload data stored in either the root-level or the respective
material-level Resources collection.

Figure 2: Excerpt from the definition of Baseline AxF. Collections are denoted
by [..].

4 ©X-Rite, Inc.

AxF allows storing an arbitrary number of different representations for a
single material. It is, however, important to understand that each such rep-
resentation is assumed to represent the very same (physical) material sample.
In other words: Different representations of the same material approximate the
same appearance, but potentially at different quality due to the use of different
models.

The main motivation for AxF materials with multiple representations is
backwards compatibility: By storing a representation with reduced feature set
in addition to a representation with full feature set, third-party renderers that
do not (yet) support the full feature set can use this compatibility representation
as fallback.

If multiple representations are available for a material, a renderer should
automatically choose the representation that is most suitable, more precisely
the best representation that is compatible with the capabilities of the respective
renderer. Since version 1.7.1, the AxF SDK provides convenience functions for
exactly this purpose and also supports – to some extent – automatic conversions
of the stored material representation(s) to match the capabilities of the given
renderer (for the case that no suitable fallback representation is stored explicitly
in the AxF file). See the AxF SDK documentation for details.

5 AxF Representation Classes

AxF supports different types of so-called Representation Classes, which refer to
specific classes of related reflectance models and have been chosen to support
a wide range of material types and target applications. For each class, the so-
called AxF compatibility profiles specify a baseline of specific appearance models
which should be implemented by rendering applications aiming to support the
respective compatibility profiles. The basic idea is that at file creation, the
user may enforce that representations for a certain compatibility profile will
be included in the AxF file. If the client application is known to support all
features of that compatibility profile, it is assured that it will be able to pick a
representation that it can handle. See the AxF SDK documentation for details.

In addition to surface models, AxF supports since version 1.6 also volumetric
materials (via representation class Volumetric). This way translucent materi-
als can be represented by storing the general volumetric scattering and phase
function parameters of the radiative transfer equation [Cha60].

In the following sections we will give brief overviews on each of the repre-
sentation classes. The goal is to give a reader experienced in computer graphics
and appearance modelling a good notion of the scope of the AxF baseline. We
leave out most of the gritty details and refer to the AxF SDK documentation
for details. If you need further background in general computer graphics top-
ics like BRDFs, BTFs, texture mapping, or volumetric scattering, we advise
you to consult the relevant literature. In the context of material appearance
e.g. [DRS07] is a great starting point.

5 ©X-Rite, Inc.

Figure 3: Parameter textures of an AxF 1.0 isotropic Ward SVBRDF for a
measured leather material (from left to right): diffuse color, specular color,
normal, specular roughness.

5.1 Spatially Varying BRDF

AxF defines a general SVBRDF representation based on the following evaluation
of a BRDF consisting of a diffuse and a specular component with spatially
varying parameters stored in textures (as shown in Figure 3):

fr(x, i,o) = fd(i,o;Tρd(x), TN(x)) + fs(i,o;Tρs(x), TN(x), Tα(x), ...)

The texture operator T (x) represents a discrete 2D table of values of various
types indexed by the texture coordinate x. In particular, Tρ{d,s}(x) contains
color values (either trichromatic RGB values or spectra), which are stored for
the diffuse and specular BRDF part, respectively. TN(x) represents the normal
map, which is used to vary the local coordinate system in order simulate a
bumpy surface. Tα(x), ... denotes the texture operators for model-dependent
specular parameters such as roughness.

In the following we assume that the incoming and outgoing directions i, o
are given in the local coordinate system that has been aligned to the normal
TN(x) from the normal map, and thus we omit the explicit normal parameter
for fd and fs.

The only diffuse model fd supported by AxF so far is the Lambert model:

fLambert
d (i,o; ρd) =

ρd
π

where ρd = Tρd(x) is the diffuse color.
The default specular model fs of AxF 1.0 is a variant of the Ward model as

proposed by Geisler-Moroder [GMD10], which in the isotropic case is:

fWardGM2010
s (i,o; ρs, α) = ρs

1

πα2
NGM2010 e

1
α2

(
1− 1

h2z

)

NGM2010 =
1

4 〈i,h〉2 h4
z

where h denotes the half-angle vector, and the model parameters are specular
color ρs = Tρs(x) and roughness α = Tα(x). Note that AxF also supports an
anisotropic variant of this model, see the AxF SDK documentation for details.

6 ©X-Rite, Inc.

Figure 4: The “AxF Sofa” covered with several measured AxF SVBRDF mate-
rials like fabrics, plastics, leather, and metals rendered using Autodesk VRED.
Some of the materials are taken from the MAM-2014 sample set [MAM14].

Beyond this basic model of AxF 1.0, several enhanced models are intro-
duced with subsequent AxF versions: Starting with version 1.1, an extension
of the Ward BRDF based on Schlick’s Fresnel approximation is supported,
of benefit for appearance representation for many textiles, leathers, and even
plastics. Version 1.5 adds support for the increasingly popular GGX BRDF
model [WMLT07], that is becoming sort of an industry-standard for realtime
visualization. Version 1.7 introduces an Energy Preserving SVBRDF model
based on GGX, which is compatible to the Dassault Systèmes Enterprise PBR
Shading Model (DSPBR) [DS19]. Details on all these BRDF models are given
in the AxF SDK documentation.

For best results, third-party renderers should optimally support all three
BRDF models (Ward, GGX, and the Energy Preserving GGX variant) natively.
Alternatively, if a third-party application supports only one of the two GGX-
based models, the AxF SDK can convert between GGX-based SVBRDF rep-
resentations and Energy Preserving SVBRDF representations while preserving
the appearance as well as possible.

Figure 4 shows a rendering using several examples of measured SVBRDFs,
represented using AxF’s SVBRDF model.

In the following paragraphs, further SVBRDF extensions are described:
coated materials (via the clear coat extension), alpha mapping, colored trans-
parency, and displacement mapping.

Coated Materials Many real-world materials are made of multiple layers.
In particular materials with a single semi-transparent coating layer on top of an

7 ©X-Rite, Inc.

Figure 5: Base SVBRDF material covered by a transparent Fresnel BSDF layer.

opaque or semi-transparent base layer occur often, and these kind of materials
can be modeled and rendered with acceptable additional effort compared to
single-layer materials. In AxF versions 1.1 - 1.7, the clear coat extension for
SVBRDF-based (or carpaint-based) representations was the only way to model
such materials. It assumes an achromatic coating with ideal Fresnel reflection
at the coating surface, as sketched in Figure 5. In version 1.8, AxF introduces
multi-layer materials as a more generic concept to represent materials made
of multiple semi-transparent layers, which supersedes the clear coat extension
feature-wise and can also model colored coatings and rough reflections at the
coating surface, see Section 5.5. Nonetheless, the legacy clear coat extension is
still supported, and we restrict the discussion in this section to the capabilities
of this legacy extension.

The clear coat is assumed to be completely transparent (no absorption and
scattering despite at the layer boundaries), infinitesimal thin (refracted rays
from the coating hit the lower layer at the same point), and solely defined by
its (spatially varying) index of refraction and an (optional) normal map, which
allows to model mesoscopic effects like the Orange Peel effect shown in Figure
6.

In addition to the refractive clear coat model introduced in AxF version 1.1,
AxF also supports the following simplified clear coat models in order to ensure
compatibility with a large number of existing rendering systems:

� Since version 1.3, AxF also supports a non-refractive clear coat model,
which corresponds to the refractive model except that the base SVBRDF
layer is evaluated for the original incoming and outgoing directions rather
than for the corresponding refracted directions.

� Since version 1.7.1, AxF supports another variant of the non-refractive
clear coat model with an alternative transmission term, based on a simple
Schlick approximation of the Fresnel term with a fixed F0 value (similar
to [DS19]).

8 ©X-Rite, Inc.

Figure 6: The Orange Peel effect shown for a measured paint material. For
comparison the rear patch has a perfectly smooth coating.

See the AxF SDK documentation for a precise specification of all supported
clear coat models.

If a third-party application does not support the AxF 1.1 refractive clear coat
model, it may request the AxF SDK – since version 1.7.1 – to convert SVBRDF
representations with refractive clear coat to one of the two simplified clear coat
models listed above while preserving the appearance as well as possible. (This
means that certain effects of refraction, such as the “widening” of specular lobes,
will be “baked” into the base SVBRDF model.)

Alpha Mapping Starting with version 1.4, AxF supports also standard al-
pha mapping (see e.g. [PD84]), often referred to as cut-out or opacity mapping,
for SVBRDFs. Containing spatially varying opacity values between 0 (com-
pletely transparent) and 1 (fully opaque), this map can be used to model simple
transparency for an infinitesimal thin surface. The left image in Figure 7 shows
a typical example how alpha mapping can be used to represent a perforated
leather material.

Colored Transparency Starting with AxF version 1.8, SVBRDF represen-
tations can also be extended by a non-refractive Dirac transmission model. In
comparison to alpha mapping, which is achromatic and does not consider Fres-
nel transmittance, this model enables to encode colored transparency. Assuming
a material surface of infinitesimal thickness, the light passing through it, as de-
termined by the Fresnel transmittance, is modulated by a transmission color.

9 ©X-Rite, Inc.

Figure 7: Left: Perforated leather overlaid onto a checkerboard pattern and the
corresponding measured alpha map representing the holes. — Right: Textile
rendering with measured displacement. Note the geometry’s silhouette, which
would have been a perfect line without displacement.

Note that the light direction is not altered by that, unlike by a refractive coat-
ing. With this model, for instance the appearance of thin, colored plastics or
film can be described. In order to achieve an additional cut-out effect, e.g. for
decals, it might be used in combination with alpha mapping.

Displacement Mapping Another convenient and widely used technique is
displacement mapping (first introduced in [Coo84]), which AxF supports since
version 1.4. A displacement map (a.k.a. height map) stores spatially varying
height values, which are used by the rendering engine to locally offset and re-
tesselate the geometry. The right part of Figure 7 shows an example of a textile
material with displacement.

5.2 Measured BTF

The appearance model for representation class FactorizedBTF is based on a
BTF compression technique as in [MMK03]. BTFs are naturally understood as
a multi-dimensional table of reflectance measurements of a material sample.

Let us consider that each such measurement corresponds to sampling the
general 8-dimensional reflectance field RV (xi, ωi; xo, ωo), which transfers inci-
dent light fields to their corresponding outgoing light fields parameterized on a
bounding surface V. See Figure 8 for an illustration.

The discrete version of this operator is called the light transport matrix R.
It can be obtained by discretizing the domain of the incoming and outgoing
light field:

Lo = R(K×I)Li

By assuming distant incoming lighting a typical parameterization of the incom-
ing lighting is by directions of incoming light sources:

I = {(θi,0, φi,0), (θi,1, φi,1), . . . , (θi,l, φi,l)}

10 ©X-Rite, Inc.

Figure 8: The reflectance field.

K describes the discretization of the outgoing light field and is usually given
by the image or texture size E = W×H = {1, 2, . . . , w} × {1, 2, . . . , h} and a
set of outgoing directions O = {(θo,0, φo,0), (θo,1, φo,1), . . . , (θo,v, φo,v)} similar
as above and hence

K = E×O = {(1, 1, θo,0, φo,0), (1, 1, θo,1, φo,1), . . . , (w, h, θo,v, φo,v)}.

In this sense the light transport matrix R(K×I) as given above can be considered
as a 2D table where each of the two dimensions enfolds a higher-dimensional
index set: the 2D incoming directions are enfolded along the columns and the
four dimensions of spatial position and outgoing direction are enfolded along
the rows of the matrix.

The basic idea of matrix factorization-based appearance representations is
now to apply matrix factorization techniques to the sampled data arranged into
a 2D matrix and use these techniques for data compression.

Since the mathematical field of matrix factorization is huge, we’ll leave it here
with the most common definition of the Singular Value Decomposition, which
states that each m×n matrix A of rank r can be decomposed into the product
A = USVT , where U and V are unitary matrices and S is a diagonal matrix
with sii ≥ si+1,i+1 > 0 for 1 ≤ i < k and sii = 0 for k + 1 ≤ i ≤ min(m,n).

The numbers sii are the nonnegative square roots of the eigenvalues of AAT .
The columns uj of U are the eigenvectors of AAT , and the columns vj of V

are the eigenvectors of ATA.
The key insight for data compression is the well-known Eckhart-Young The-

orem, which states that the matrix

Ar0 :=

r0∑
j

ujsjjv
T
j

11 ©X-Rite, Inc.

EigenBRDF EigenTexture Rendering (OpenGL)

Figure 9: The first three angular and spatial components of a factorized BTF
encoded in a color mapped RGB image. The right image shows a rendering of
the material.

is the best rank-r0 approximation of A in the least-squares sense. Since the
storage requirements for Ar0 are O ((m+ n)r0) compared to O(mn) we have a
compression ratio of

(
r0
n + r0

m

)
.

The 2D layout of 6D appearance data (which is in fact a BTF) as sketched
above is not optimal for data compression since the compression ratio becomes
optimal if n and m, i.e. the number of rows and columns, are roughly of the same
size. We won’t go too much into detail here, but a more balanced arrangement
which puts the spatial dimension E in the rows and the angular dimension I×O
in the columns has proven to be quite convenient in practice:

RE×(O×I) = UESVT
I×O

Now the matrix UE contains in its columns the so-called EigenTextures, and the
columns of VI×O are the EigenBRDFs. Figure 9 shows an example for these
factorized components by depicting the first three rows or columns, respectively,
where the 4D EigenBRDFs have been enrolled into a 2D image.

5.3 Measured Carpaint

Since metallic paints, as they are typically used in the automotive industry, are
not well represented by either SVBRDFs or standard BTFs, AxF supports a
specialized representation for measured metallic paints in the spirit of the work
of Rump et al. [RMS+08]. Again, we do not go too much into details here but
refer the reader to the related scientific literature.

We’ll leave it with the introduction of the main components such that gen-
eral complexity and expressiveness of the model can be judged quickly by the
experienced reader.

The model for representation class CarPaint2 consists of three main compo-
nents: first, a BRDF part which models the angular brightness variation of the

12 ©X-Rite, Inc.

Flake texture slice Rendering (Raytracing)

Figure 10: The left image shows a single slice from the flake texture table. The
other images show renderings with different illumination conditions.

paint, second, an angular dependent color table which captures low-frequency
color shift of modern effect paints, and finally, a BTF part which captures the
visible flakes. The three components are sketched in the following paragraphs.

Brightness BRDF The BRDF is modeled using a multi-lobe Cook-Torrance:

fbrightness
r (̄i, ō) =

ρd
π

+

K∑
k=1

ρsk
D(h̄;αk)F Schlick(̄i, h̄;F0,k)G(̄i, ō, h̄)

π īz ōz

where D is the Beckmann distribution, F Schlick Schlick’s Fresnel approximation,
andG the Cook-Torrance geometry term [CT82]. K = 3 is the default number of
lobes for fitting measurement data and can be considered the de-facto standard.

We use bars over the direction vectors in this section, to indicate that these
directions are defined below an optional coating layer, which can be described
via the clear coat extension similarly as for SVBRDF representations (see Sec-
tion 5.1). E.g., in case of refractive clear coat, ī stands for the refracted incoming
direction ī = refract(−i,ncoating

s , ηairη+), where ncoating
s denotes the normal of the

clear coat and η+ its index of refraction. ō is defined accordingly.

Color Table The BRDF brightness term is modulated by a 2D color ta-
ble χ(θh̄, θ̄i) parameterized by the angle between half vector and normal θh̄ =
arccos(h̄z) and the angle between half vector and incoming direction θ̄i =
arccos(

〈
h̄, ī
〉
). In classical microfacet modeling θh̄ is interpreted as the angle

between the overall surface normal and the microfacet normal. In the case of
a metallic paint we identify microfacets with metallic flakes, hence θh̄ can be
interpreted as the angle between the overall surface normal and the normal of
a flake (modeled as a perfect mirror). Correspondingly, θ̄i is the angle between
the refracted illumination direction and the flake normal.

Flake BTF Textures The spatially varying part, i.e. the visible flakes, is also
parameterized based on θh̄ and θ̄i, but now each entry does not contain a single

13 ©X-Rite, Inc.

color value but a complete flake texture slice as shown on the left of Figure 10,
which actually leads to a 4D table Ξ(x, θh̄, θ̄i). In practice the sampling of the
angular space can actually be quite sparse, which results in overall texture sizes
of 20-50 Megabytes.

Combined Model The complete spatially varying model for the carpaint
base material below clear coat reads as follows:

fr(x, ī, ō) = χ(θh̄, θ̄i) f
brightness
r (̄i, ō) + Ξ(x, θh̄, θ̄i)

For more details on how to evaluate the combined model including the clear
coat, see the AxF SDK documentation.

5.4 Volumetric Scattering

Due to the advent and success of using Monte-Carlo integration for physically
correct rendering, more and more rendering software packages are capable of
solving the full radiative transfer equation (RTE) [Cha60], which describes the
full light transport in participating media. Again, this document shall not give
a full-fledged introduction into rendering and modeling of volumetric scattering,
but instead we refer the interested reader to publications like [NGHJ18], which
give a great overview on the topic.

It is important to note, though, that for representing the scattering prop-
erties of homogeneous translucent materials the generic physical parameters
derived from the RTE are nowadays readily supported by many production
rendering packages:

σa(λ), σs(λ) – spectral absorption and scattering coefficients (unit 1
mm), de-

pending on wavelength λ;

p(ωi, ωo) – phase function, which describes the contribution of in-scattering
light.

AxF uses the well-known Henyey-Greenstein phase function [HG41], which
only depends on the angle θ between in-scattered and the outgoing direction
and the scattering parameter g ∈ [−1, 1]:

pHG(θ; g) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2

AxF does not specify specialized models or approximations for volumetric
scattering, but stores the generic physical parameters: σa, σs, g. Thereby it
leaves it to the rendering software to either fully solve the RTE for the given
parameters using Monte-Carlo integration or to employ a specific approximation
whose parameters can be derived from the original physical parameters.

Figure 11 shows an example where such a description is used to model a
translucent plastic material. The parameters can be derived from measurements
of the material, e.g. over a black and white backing.

14 ©X-Rite, Inc.

Photo Rendering

Figure 11: The parameters used for rendering the 3-step plastic chip on the right
(homogeneous spectral absorption and scattering coefficients, isotropic phase
function (g = 0)), have been derived from the photo on the left. Note the
blurring of the black/white line in the photo which is a result of the non-smooth
surface of the real plastic chip. The model on the right assumes a perfectly
smooth interface.

In case of a stand-alone volumetric AxF representation, the boundary of the
volume is restricted to an ideally flat Fresnel surface. Starting with AxF version
1.8, a volumetric representation can also be used as base layer within a multi-
layer material (see Section 5.5), in which case the boundary of the volume can
be specified by an SVBSDF representation with GGX-based BRDF and BTDF
models [WMLT07] and custom parameter textures, including a normal map to
account for structures on mesoscopic scale and a roughness map to account for
microscopic surface roughness.

5.5 Multi-Layer Materials

Since version 1.8, AxF has a generic concept to represent materials made of
multiple semi-transparent layers. Such multi-layer materials contain a sepa-
rate sub-representation for each layer, each of which encodes the appearance
properties of that particular layer. This is useful

� to model coated materials;

� for volumetric materials to separate the appearance properties of the ma-
terial surface from those of the material volume.

While this concept would support an arbitrary number of layers, for the
current AxF version, multi-layer materials may consist of at most two layers,

15 ©X-Rite, Inc.

in order to simplify their implementation. This restriction may be lifted in a
future AxF version.

The new concept for multi-layer materials improves upon what was possible
in previous AxF versions via the clear coat extension sketched in Section 5.1.
Clear coat appearance effects that could already be achieved previously are:

Stand-alone Clear Coat (AxF ≥ 1.1) Appearance Effects

Representation reflection transmission

SVBRDF- or
Dirac Dirac

Smooth clear coat
Carpaint-based Clear coat with orange peel

Volumetric Dirac Dirac Smooth surface

AxF 1.8 introduces multi-layer representations supporting the following com-
binations of base layers and upper layers, where the upper layer is specified by
an SVBSDF sub-representation, for extended appearance effects:

Multi-layer Representation New Appearance Effects

Base Layer Upper Layer (AxF ≥ 1.8)

BRDF BTDF

SVBRDF-
GGX Dirac

Rough coating (due to GGX BRDF)
based Colored coating (due to transmission color)

Volumetric GGX GGX

Mesostructure (via SVBSDF normal map)
Rough surface (rough BRDF and BTDF)
Hazy transmission (rough BTDF only)
Colored surface (BTDF transmission color)

Details on multi-layer materials can be found in the SDK documentation.

6 Integration and Performance

For the integration of AxF into third-party applications, X-Rite provides a
C/C++ based SDK, which is made available on request under a royalty-free
license (contact one of the authors or LicensingTeam@XRITE.com directly).

For each AxF material, the SDK allows to decode the metadata, the AxF
representations, and since version 1.8 also the AxF measurements (when stored
in the file), along with their associated payload data (AxF resources). The SDK
is fully documented and comes with example code.

6.1 Decoding AxF Representations

While the AxF SDK contains an easy-to-use implementation of CPU-based
rendering (axf::decoding::CPUDecoder), this implementation is not aggres-
sively optimized, but rather should be considered as reference implementation,
which should be used primarily for reference and testing purposes. In particu-
lar, we do not recommend to use this way of decoding in performance critical

16 ©X-Rite, Inc.

mailto:LicensingTeam@XRITE.com

production environments. Instead, we encourage client applications to imple-
ment the AxF representations, which we sketched in Section 5, internally and
to use the axf::decoding::TextureDecoder interface for retrieval of the ap-
pearance model parameters (i.e. textures). The full technical details required
for implementing a particular representation class can be found in the SDK
documentation.

6.2 Handling Colors and Spectra

AxF supports storing color resources in monochromatic, trichromatic, pseudo-
spectral, and full spectral color spaces. To facilitate that, each color resource is
associated with a certain ColorSpec node (see the ColorSpecs collection sketched
in Section 4), which specifies the corresponding color space precisely.

In any case, AxF uses a linear color space (i.e. a linear subspace of the spec-
tral space) to store a color resource. Please note that we consider a color (from a
color resource) to correspond to a reflectance spectrum (i.e. spectral reflectance
in physical terms) or to a projection thereof into the respective linear subspace
that the ColorSpec represents. A unity reflectance spectrum represents a neu-
tral material, i.e. one for which the spectrum of the reflected light corresponds
exactly to the spectrum of the incoming light.

Currently, the information from the ColorSpec node cannot be retrieved
explicitly via the SDK. Instead the client application defines a target color
space into which all retrieved color resources will be converted (based on the
AxF-internal ColorSpec node) before returning them to the client. Details can
be found in the SDK documentation.

Spectral Rendering Starting with version 1.6, the AxF SDK supports query-
ing of spectral color resources for representations that actually store spectral
data. Since AxF version 1.6, this is supported for Volumetric and SVBRDF -
based representations and since AxF version 1.8 also for the CarPaint2 repre-
sentation class and for multi-layer representations.

If a representation does not store full spectral data, it has to be decoded in a
trichromatic target color space. Nonetheless, in this case it is possible to query
a “spectralization transformation”, which is a matrix that can be used to trans-
form a trichromatic color from the selected target color space to a corresponding
spectrum (for any given spectral sampling).

For details on both techniques for spectral rendering, we refer to the SDK
documentation.

6.3 Performance and Memory Consumption

Measured appearance has often been considered as being more resource demand-
ing than tweaked materials based on manually edited texture images. This has
been true for BTF-based material representations which rely on dense sampling
of both the spatial and the angular dimension of appearance, but it does not
apply to measured materials based on the SVBRDF representation. The reason

17 ©X-Rite, Inc.

is simply that even hand-tweaked materials are essentially SVBRDFs: every
texel stores parameters of a certain BRDF model. As a result most of the op-
timization techniques which are applied to hand-tweaked materials can also be
applied to measured materials with a similar effect.

While the numbers given in the following for illustrating AxF storage require-
ments are based on SVBRDFs, most of the techniques could also be applied to
BTFs and Carpaint representations.

A typical AxF 1.1 anisotropic SVBRDF resulting from a TAC7 measurement
consists of the following parameters:

� Diffuse Color, |Tcd(x)| = 3 channels

� Normal Map, |TN (x)| = 3 channels

� Specular Color, |Tcs(x)| = 3 channels

� Anisotropic Roughness, |Tps(x)| = 3 channels1

� Fresnel, |TF0
(x)| = 1 channel

� Material dependent:

– Clearcoat Layer IOR, 1 channel

– Clearcoat Layer Normal Map, 3 channels

Without clear coat, such an SVBRDF has 13 channels and given a spatial res-
olution of 1024 × 1024 pixels this leads to 13 × 1024 × 1024 × 4 = 52 MB
(additionally 16 MB for clear coat) of uncompressed data in 32-bit precision.

Note that the storage requirement for the AxF file itself is in general con-
siderably lower, since AxF applies common lossless compression techniques for
storing the data. However, this kind of compression is not suitable for random
access to the data, thus the data is decompressed transparently when reading
it from the AxF file. Therefore, we only consider the uncompressed in-memory
storage requirements of AxF materials in the following.

Using roughly 50 MB of storage per material can impose a restriction for the
use of AxF materials in real-time applications and on low-performance systems,
for instance at the point-of-sale. Fortunately, the in-memory storage require-
ments can be reduced in numerous ways for most practical applications:

1. Before measurement: By selecting the optimal model for the material and
use case. This may correspond simply to using less BRDF parameters
(channels) like in the isotropic vs. anisotropic case. Or to the reduction
of spatial variation by assuming that some parameters are constant over
the sample, for instance by using the global F0 option, which assumes
a constant Fresnel parameter, or the dielectric material option, which
assumes colorless specular reflections and thereby eliminates chromaticity
variation in the specular color texture.

1In AxF, this is in general represented by two resources, a 2-channel Roughness map
(representing roughness values along the two principal axes) and a single-channel Anisotropic
Rotation map (containing rotation angles).

18 ©X-Rite, Inc.

Figure 12: AxF Editor integrated into X-Rite’s Digital Material Hub.

2. During data preparation: By using the AxF Editor of X-Rite’s Digital
Material Hub (cf. Figure 12) to reduce the spatial variation in certain
BRDF parameter maps and by sharing AxF resources between materials
where appropriate (shown in Figure 13).

This approach is recommended in particular if the material has a dominant
base color or BRDF. Think of a material like single-colored molded plastic,
which has an almost constant BRDF but high variation in the normal
and/or displacement map.

3. While requesting data from the SDK: By choosing an appropriate data
type (for instance half-precision floating point compared to 32-bit preci-
sion) and the required (maximum) spatial resolution, in which to store
textures in memory.

4. By further reducing the memory footprint of texture resources in the client
application, for instance by applying certain texture compression tech-
niques or by supporting the sharing of resources as represented in the
AxF file.

By applying and combining theses techniques, storage reductions from 50%-80%
compared to the original 32-bit precision can easily be achieved without losing
significant visual fidelity. In our example this might result in in-memory storage
requirements of only 10 MB.

Again, further details can be found in the SDK documentation.

19 ©X-Rite, Inc.

Figure 13: Two leather materials with different diffuse base color, but sharing
the same diffuse and specular intensity map and normal map resources.

7 Wrap-up

In this paper we introduced X-Rite’s proposal for an appearance exchange for-
mat, which handles the low-level details like efficient storage and access of pay-
load and metadata, how colors are specified etc. Although implementations
into commercial software like NVidia’s MDL [MDL15] or Autodesk VRED are
available (cf. Figure 4 for an example), the definition of the top-layer semantic
(Baseline AxF) and especially its material representations are not meant to be
complete.

Further definition of the format needs to focus on additional representations
which extent the gamut of materials that can be well represented in a portable,
i.e. exchangeable way. Obviously, this has to be done in close collaboration with
both the software vendors, who decide which kind of material models they will
support and integrate in their software, and the users, who define the types of
materials that need to be digitized as accurate as possible in order to increase
the quality and credibility of the digital design process.

Then goal would be to build a consortium of hardware and software vendors,
members of the research community, and users of measured material appear-
ance to define future requirements and demands for additional AxF features and
especially material representations. If a broad support for an agreed baseline of
representations can be achieved, this can be the first step towards a standard-
ization of digital material appearance making efficient exchange and archival of
appearance possible for industry and research.

20 ©X-Rite, Inc.

A Document History

Version 1.8, January 2021 Added description of the new Measurements and
root-level Resources collections. Added paragraph on the new Colored
Transparency feature for SVBRDF-based representations. Added section
on the new Multi-Layer Materials and referred to it in the sections on
coated SVBRDF-based materials and volumetric representations. Added
note on the extended support of representations with spectral data.
Corrected the isotropic Ward formula in Section 5.1. Additional minor
changes in Sections 4 - 6 for clarification (not color coded).
Removed the “Appendix on BRDF models” from this white paper. Please
refer to the AxF SDK documentation instead, which contains an extensive
description of all BRDF and BTDF models supported by this AxF version.

Version 1.7.1, February 2020 Added information about the new simplified
clear coat variant and about the new AxF SDK feature for converting
representations to match the capabilities of a given third-party renderer
that supports a subset of AxF compatibility profiles only.
Removed outdated information such as old integration guidelines, while
referring to the AxF SDK documentation instead, which contains an up-
dated implementation guide and was extended by a lot of detail informa-
tion in AxF SDK version 1.7.1.

Version 1.7, April 2019 Added section on the new Energy Preserving GGX
BRDF model.

Version 1.6, March 2019 This version introduced a lot of changes:

� Started color coding changes between consecutive versions of the pa-
per and added this Document History section.

� Corrected Geisler-Moroder Term - the old version was the one for the
non-normalized half-angle vector.

� Added new Volumetric representation class for volume scattering.

� Extended paragraph on spectral rendering.

� Moved updated and extended part on BRDF models to an Appendix.

� Minor updates in Wrap-up section.

Version 1.5, March 2018 Added note on support of the GGX Microfacet
model as part of the SVBRDF representation.

Version 1.4, February 2017 Added paragraphs on alpha and displacement
mapping.

Version 1.3, July 2016 Added a paragraph on refractive and non-refractive
coatings.

21 ©X-Rite, Inc.

Version 1.2, April 2016 Added documentation for new measured Carpaint
representation. Added a section on the integration of the AxF SDK and
performance considerations.

Version 1.1, January 2016 First public version of this white paper.

References

[Cha60] S. Chandrasekhar. Radiative Transfer. Dover Books on Intermedi-
ate and Advanced Mathematics. Dover Publications, 1960.

[Coo84] Robert L. Cook. Shade trees. SIGGRAPH Comput. Graph.,
18(3):223–231, January 1984.

[CT82] R. L. Cook and K. E. Torrance. A reflectance model for computer
graphics. ACM Trans. Graph., 1(1):7–24, January 1982.

[DRS07] Julie Dorsey, Holly Rushmeier, and François X. Sillion. Digital
Modeling of Material Appearance. Morgan Kaufmann / Elsevier,
December 2007.

[DS19] Dassault Systèmes. Enterprise PBR shading model, spec. version
2019x / 2020x, 2019. https://github.com/DassaultSystemes-

Technology/EnterprisePBRShadingModel.

[GMD10] David Geisler-Moroder and Arne Dür. A new Ward BRDF model
with bounded albedo. Computer Graphics Forum, 29(4):1391–1398,
2010.

[HDF15] Hierarchical Data Format, version 5, 1997-2015. http://www.

hdfgroup.org/HDF5/.

[HG41] K. G. Henyey and J. L. Greenstein. Diffuse radiation in the galaxy.
Astrophysical Journal, 93:70–83, January 1941.

[ISO15] ISO 17972-1:2015. Graphic technology – Colour data exchange
format – Part 1: Relationship to CxF3 (CxF/X). 2015. https:

//www.iso.org/standard/61500.html.

[MAM14] MAM-2014 sample set, 2014. https://sites.google.com/site/

mam2014samples/.

[MDL15] NVidia MDL - Material Definition Language, 2015. http://www.

nvidia.com/object/material-definition-language.html.

[MMK03] Gero Müller, Jan Meseth, and Reinhard Klein. Compression and
real-time rendering of measured BTFs using local PCA. In Vision,
Modeling and Visualisation 2003, pages 271–280, November 2003.

22 ©X-Rite, Inc.

https://github.com/DassaultSystemes-Technology/EnterprisePBRShadingModel
https://github.com/DassaultSystemes-Technology/EnterprisePBRShadingModel
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://www.iso.org/standard/61500.html
https://www.iso.org/standard/61500.html
https://sites.google.com/site/mam2014samples/
https://sites.google.com/site/mam2014samples/
http://www.nvidia.com/object/material-definition-language.html
http://www.nvidia.com/object/material-definition-language.html

[NGHJ18] Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz.
Monte Carlo methods for volumetric light transport simulation.
Computer Graphics Forum (Proceedings of Eurographics - State of
the Art Reports), 37(2), May 2018.

[PD84] Thomas Porter and Tom Duff. Compositing digital images. SIG-
GRAPH Comput. Graph., 18(3):253–259, January 1984.

[RMS+08] Martin Rump, Gero Müller, Ralf Sarlette, Dirk Koch, and Reinhard
Klein. Photo-realistic rendering of metallic car paint from image-
based measurements. Computer Graphics Forum, 27(2):527–536,
April 2008.

[WMLT07] Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E.
Torrance. Microfacet models for refraction through rough surfaces.
In Proceedings of the 18th Eurographics Conference on Rendering
Techniques, EGSR’07, pages 195–206. Eurographics Association,
2007.

23 ©X-Rite, Inc.

	Motivation
	Requirements
	Design Decisions
	Baseline AxF
	AxF Representation Classes
	Spatially Varying BRDF
	Measured BTF
	Measured Carpaint
	Volumetric Scattering
	Multi-Layer Materials

	Integration and Performance
	Decoding AxF Representations
	Handling Colors and Spectra
	Performance and Memory Consumption

	Wrap-up
	Document History

